Nonlinear dynamics of lipid-shelled ultrasound microbubble contrast agents

نویسندگان

  • A. A. Doinikov
  • P. A. Dayton
چکیده

Encapsulated gas microbubbles, known as contrast agents, are widely used in ultrasound medical applications. The present study is devoted to modelling of the spatio-temporal dynamics of lipid-shelled contrast agents. A theoretical model is proposed that describes the radial and translational motion of a lipid-shelled microbubble in an ultrasound field. The model approximates the behaviour of the lipid shell by the linear 3-constant Oldroyd constitutive equation, incorporates the translational motion of the bubble, and accounts for acoustic radiation losses due to the compressibility of the surrounding liquid. The values of the shell parameters appearing in the model are evaluated by fitting simulated radius-time curves to experimental ones. The results are then used for the simulation of the translational motion of contrast agent bubbles of various radii and the evaluation of the relationship between equilibrium radii of lipid-shelled agents and their resonance frequencies in the regime of nonlinear oscillation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and investigating the effect of ultrasound waves pressure on the microbubble oscillation dynamics in microvessels containing an incompressible fluid (Research Article)

Understanding the dynamics of microbubble oscillation in an elastic microvessel is important for the safe and effective applications of ultrasound contrast agents in imaging and therapy. Numerical simulations based on 2D finite element model are performed to investigate the effect of acoustic parameters such as pressure and frequency on the dynamic interaction of the fluid-blood-vessel system. ...

متن کامل

The powerful microbubble: from bench to bedside, from intravascular indicator to therapeutic delivery system, and beyond.

This review discusses the development, current applications, and therapeutic potential of ultrasound contrast agents. Microbubbles containing gases act as true, intravascular indicators, permitting a noninvasive, quantitative analysis of the spatial and temporal heterogeneity of blood flow and volumes within the microvasculature. These shelled microbubbles are near-perfect reflectors of acousti...

متن کامل

Contrast-enhanced ultrasound achieves new breakthroughs

Evaluations under way at Thomas Jefferson University are focusing on the use of gas-encapsulated microbubble contrast agents with nonlinear ultrasound imaging techniques to not only detect but also help characterize breast cancer noninvasively. Other recent studies have examined how microbubble contrast agents interact with ultrasound acoustic fields to demonstrate the effectiveness of contrast...

متن کامل

Contrast-enhanced ultrasound achieves new breakthroughs

Evaluations under way at Thomas Jefferson University are focusing on the use of gas-encapsulated microbubble contrast agents with nonlinear ultrasound imaging techniques to not only detect but also help characterize breast cancer noninvasively. Other recent studies have examined how microbubble contrast agents interact with ultrasound acoustic fields to demonstrate the effectiveness of contrast...

متن کامل

In vitro contrast-enhanced ultrasound measurements of capillary microcirculation: comparison between polymer- and phospholipid-shelled microbubbles.

The focus of contrast-enhanced ultrasound research has developed beyond visualizing the blood pool and its flow to new areas such as perfusion imaging, drug and gene therapy, and targeted imaging. In this work comparison between the application of polymer- and phospholipid-shelled ultrasound contrast agents (UCAs) for characterization of the capillary microcirculation is reported. All experimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007